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APPLICATION OF THE METHOD OF CHARACTERISTICS TO SUPERSONIC
By ANTONIO I?ERBI

SUMMARY

.4 sy8tem for calculating tlw physical propertti8 of euper80nic
rotational @w with axial symmetry and supersonic roiiztionul
JOW in a two-dimensional @ld wox determined by u8e of tlu
characteristic method. The 8ystem wa8 applied to the study
of external and internal jlow for supersonic inkt8 with am-al
symmetry. For a circular conical inlet the 8hock that occurred
at the lip of the inlet became 8tronger a8 it approached the an”8
of the inlet and be.cume a normal 8hock at the axk The rep-on
in which strong shock occurred increased m“th the increase of
the angle oj’internal cone at the lip of the inlet. For an inlet
~“th a central body th method of characterMic8 wa8 applied to
the design of an internal-channel shape that, theoretically, re8ult8
in rery ejicient recompre88ion in the inlet; it was 8houm that
if an e~u8er ~8 mnn ected with the di$u8er a body of rerohdicm
w“th rey small 8hock+are drag can be determined.

INTRODUCTION

The characteristics method for the determination of super-
sonic phenomena was first used by Prandtl and Busemann
for two-dimensiomd flow (refemmces 1 and 2). For flow
with axial symmetry Frankl (reference 3) used the method
of characteristics for determining the shape of ~ supersonic
circular effuser with uniform exit velocity, and Ferrari
(references 4 and 5) independently used the characteristics
method for determining supersonic phenomena for every
type of boundary condition. Subsequently GuderIey (refer-
ence 6) and Sauer (reference 7) transformed the system pro-
posed by Frankl and Fermri and obtained a dHerent
analyt iml solution of the problem. In all applicat.ions the
hypothesis of potential flow was made; therefore the
equation of potentiaI flow was used.

When shock waves that are not plane (twodimensiomd
flow) or conical (flow with axhd symmetry) occur in uniform
flow, the variation of entropy across the shock is not constant
and the flow behind the shock is no longer isentropic and
becomes rotational. If the variation of entropy is small,
the effect of rotation of the flow is not important for de-
termining the pressure distribution rdong a body and the
theory of potential
wave is strong and

flow gives correct results. If the shock
has large curvature, however, the effect

ROTATIONAL FLow

of the rotation becomes important ancl the flow must be
considered as rotational.

The method of characteristics can be extended to apply to
rotational flow if, in place of the potential function for the
differential equation of motion, the stream function con-
sidered by Crocco (reference 8) is used. ‘With the character-
istics method for rotational flow a more exact determination
can be made of the shape of the shock wave and the dist~.b_u=_
tion of velocity and pressure for phenomena in which the
eHect of rotation is important, as in the internal flow through
supersonic inlets. The procedure of numerical calculation is
similar and not much more complicated than that used for
the case of potential flow with axial symmetry.

SYMBOLS
pressure
density
entropy, mechanical units
velocity
Mach number
limiting velocity corresponding to adiabatic expansion

to zero pressure
speed of sound

()ratio of velocity to limiting velocity ~Z

x-component of rehtive velocity
y-component of relative velocity
Cartesian coordinates

“achang’e(arcsha
angle between velocity V and x-axis, radians
angle between tangent to shock and direction of

velocity of flow in front of shock
deviation of direction of velocity across shock wave
angle of polar coordinate in conical field .-
potent.ial function
stream function for rotational flow (see equation (11))
ratio of specillc heat at constant pressure and constant

volume
gas constant
normal to streamline
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H, L, K, and N defied by equation (14)
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sin ~.4
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—.. .

r=tan 19A+iitan &
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Subscripts:
o chamber condition (zero-vdocity adiabatic transfor-

mation)
A points of first family
B points of second family
c’ quantities in the points calculated from A and B
x derivative with respect to x

Y derivative with respect toy
a ahead of shock
b behind ShOCk

(00. value corresponding to value of P a-t point C=
c. at point Cw

CHARACTERISTICS METHOD FOR SUPERSONIC POTENTIAL
FLOW WITH AXIAL SYMMETRY

The differential equation for potential flow with tial
symmetry (reference 4) is

(1-%) 3+(’-$)%-2+%+;=0 ‘1)

In supersonic flow some lines can be individuatsd (charac-
teristic Iines) that divide the flow inta two regions for which
the values of 0, & and @r along the line are diilerent. For
every point of the flow two characteristic lines can be de-
termined; every line is inclined ah the Mach angle with
respect to the direction of the velocity at the point, and
therefore the characteristic lines can be divided into two
families on the bfisis of the sign of the angle of the characteris-
tic line with respect to the direction of the velocity. A
family that is usually called the first family is defined by
the equation

‘Y=tan (/9+9)
&

(2)

and the other family (second family) is defined by

‘~= tan ($l?-~)ii% (3)

The variation of the quantities that dcfino the velocity
(p and IT along a characteristic line is giwm by the following
equations from reference 5: —

For the first family,

‘$–dP tan /?-l $=0

and for the second family,

where 1 and m are trigonometric expressions defined us

~=sin /3 sin p tan /3
Cos (p+ $?)

~=sin 13sin w tan 19
Cos (p– p) I

(4)

(5)

(G)

If the direction of the veIoc.ity and the Jlach nurnlmr at
two points near each other (points A and B in fqy 1) mo
known, the direction of the velocity and the Mach number
at a point C given by the intersection of the two chru-acMr-
istic lirtcs of diflerent family starting from points A and B
can be determined. Because the distrmccs BC and AC am
small, all the coefficients of equations (4) and (5) can bo
considered constant and coincident to the corresponding
values at points B and A, and the ttingcnts to iho clmractcr-
istic lines at points A and B can be substituted for the chtir-
acteristic lines from point A to point C and from point B
to point C. In this case tho lines AC and BC are straight
lines. The line BC is inclined at an angle p–#1 whh respccL
to the x-axis and the line AC is inclined at an angle +I+P with
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FIGURE I.—GeaodrIcd cxmstruct!onfordetormhingpoint~ bytheohwadcrktkamethod.
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respect to the x-axis. Eqtiation (4) can be applied for the
line AC where

dX=~–XA .

Y=%’A
~’= p--

p=8A

1=1.

and equation (5) can be applied for the line BC where

dx=r~–z~

Y=YD
~.?= ~.7B

8=~B

m=m=

For practical use equations (4) and (5) are combined and
transformed by means of the ratio W’ of the ve~ocity V to
the limiting velocity T“l. This ratio is defined as

V1 2 1

()
~ =~

and the following equations are obtained:

(8)

(9)

~~>= ~A+d~>

I (10)
%=f%+b

With the method of characteristics (reference 4) it can
be shomu that., if a deviation of a streadine which wets the
body occurs, the phenomena on the corner are regulated by
the same laws that regulate the two-dimensional flow;
therefore, the tangats of every characteristic line starting
from the corner are lmown. H the initial flow conditions
are known, the step-by+tep calculation of d the physical
properties of the flow in the entire field is permitted, partic-
ularly the calculation of the shape of the shock wave and
the prasure distribution along any body of revolution
with axial symmetrical flow in cases in which the hypothesis
of potential flow is correct.

CHARACTERISTICSMETHOD FOR SUPERSONIC ROTATIONAL
FLOW WITH AXIAL SYMMETRY

Supersonic perfect flow is rotational when the flow is
preceded by a shock wave and when the variation of entropy
across the shock wave changes from point to point behind
the shock. In this case the transformation of the fluid
along every streamline is isentropic until another shock wave
occurs in the fluid (reference 8).

If a. stream function # is assumed to be defined by the
following equations from reference 8:

#,=yu(l–w’)*

4.= –yo(l– m’)+~
the equation

f(#) =–vz–u”L
y(l —r’)~1

I (11)

(12)

is a function of only the stream function * (reference 8);
and therefore from the equations of state, continuity, energy,
and steady motion the following equation can be obtained:

Equation (13) is a Monge-&np&e squation, and if

E=I–$ .-

L=l–;

two characteristic families with the following equations can
be obtained: For the fit family,

(@ K
d

K’ L_=— _
dx H p–g (15)

(16)

and for the second famiIy,

If n is the normal to the streamline, equation (11) yields

#z2+4:=Y’~2 (1 –m+ ... ..—.-

d$ 2
()‘%

=grad’# (19)

and

curl VXV 1
a’

grad S=7-- ~ (20”’
‘~T

because s is constant along every streamline; therefore

(21)
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and the follo~tig expressions can be obtained:

J
When equations (21) and (22) are substituted in equations
(]5) and (17) and (16) and (18) and the Mach angle and the
velocity are expressed in polar coordinates, equations (15)
and (17) become .

g=tml (/s+q) (finst family) (23)

%an (p–p)&– (second family) (24)

and equations (16) and (18]. become

Equations (23) and (24) are identical to equations for
potential flow (2) and (3), and equations (25) and (26) are
similar to equations for pot eutial flow (4) and (5), cliffering
only by the terms that contain ds. E_.quations (23) to (26)
permit a step-by-step calculation of the entropy, intensity
of velocity, and direction of the velocity if the initial and
boundary conditions me known. If all physical properties
are known for two points A and B and if the two points are
close to each other, the tangents h the characteristic lines
at the points A and B can be substituted for the chmacteristic
lines with close approximation. In this way a point C can be
determined as the intersection of the second characteristic
line of point B with the first characteristic line of point A
(fig. 1), because P and P are known for the points A and B.

For the characteristic lines of the first family, equation
(25) gives the variation of P and IJ7 from point A to point C,
and all the coefficients are known and correspond to the

d8.
coefficients for point A; only the term ~ M unknown. From

equation (26) the variation of P and W from point B to point

C can be determined, and all other terms, except ~; are

known and equal h the values for point B. The term #

can be determined from the vahe of the entropy for points
A and B.

From figure 1, in equation (25) the term $ can be writ-

ten aa
d8_(sr8.) Cos (j3A+p.)
i%– (xc–x.) sin /3.

(27)

and in equation (26) can be written as

ds _(8,–SC) COS (pB–&)
Z– (U–XB) sin /3~ - ““ ““-””

(28)

If the points A and B are close to each other and the vriria-
tion of entropy is gradual, equation (27) carJbe writki as

(is -.
&“

(x.–x.) ,.s?2?;=”) *T
and # can be considered equal in equa~ions (25) and

(29)

(26)*

In this case # is known; therefore q and Wean be calculated

for point~, For practical calculations equations (25) and
(26) should be transformed into two equations (equations (31)
and (32)) each of which contains only one of the unknown ‘
terms dw and dw.

For simplicity, let

&=x.–x*

to=%–Ll

g=l+a
to

Ap=p~—p~

h=%..

e= sin fi,4
cos (B.A+~.~)

.f=
sin ~B

cos (~B—~~)

(30)

Then the following equations can be obttiined:

rd~d= l—h—A~tan #~+A(gj si&#?B+he Sillg~A)

+~OmBg tOhrA—.—

!/B gA
(31)

‘k’’’=%kd (36)

tom~g ~d $~!~ become very im-k equation (31) the terms ~
Y.-i

portant M y approaches zero, near the axis of the body;
therefore, in this region the distance between the poinLs con-
sidered. must be reduced to obtain sufficient accuracy.
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~HARACTERISTICS METHOD FOR TWO-DIMENS1ONAL
SUPERSONIC ROTATIONAL FLOW

b two-dimensional flow an equation similar to equation
(13) can be obtained if n special stream function defied by
the following equation is assumed (reference 8):

~,=~(1– ~2)+1

*== –V(1– J772)* }

In this case the equation of motion (equation
(reference 8)

(37)

(13)) becomes

(38)

Equation (38), like equation (13), is a lfonge-Amp&e
equation and permits the determination of two equations that
dtine the characteristic lines and two equations that give
the variation of the velocity along the charactmistic lims.
The equation with transformations analogous to the case of
threedimensional flow can be written in the folIowing form:

‘y tan (fl+ q) (&t fa~y)
&=

(39)

dv tm (P–B) (
z’

second family) (40)

Equations for P and dtT similar to equations (31) and (32)
can be obtained from equations (39) to (42) by using equation

(29) for the expression ~ as follows:

r dq~= 1–h–Ap tan 19B+A(~ sin’ ~~+he sin’ 13J (43)

d??;
~ =tful f?ddP—Ae sir? PA (44)

8c= 8A +AeTR (45)

qC= PA + &A (46)

Trc=?l;+m; (47)

‘k’’”=wb) (48)

DETERMINATION OF SHAPE OF SHOCK AND PRESSURE
DISTRIBUTION ALONG A BODY

The physical properties of supersonic flow pasta body of
revolution in axiaIIy symmetrical flow can be determined
step by step by the use of equations (31) to (36). The 5ys-

/

._L ___

FIGCKC Z-PractIc81 system of cnlctdatlng the flow field for a pokied-nosebodyd revoIut!on.

tern of calculation is similar to that for potential flow. lf the
body begins with a point (reference 5), a cone tangent to the
body (fig. 2) can be substituted for the front part of the body.

. . ..—

If point A is the point at which the body can no longer be
considered coincident with the cone, the velocity at point A
is lmown from the cone calculations (referencw 9 and 10);
therefore, the shape of hhe characteristic line AB of the first
family can be designed, because p and P corresponding to
diflerent angles 8 are lmown from the cone calculations.
At point A the body turna through an angle Ap and the flow
undergoes a transformation that is determinable by the laws
of two-dimensional flow. The velocity and dwection of the
flow after the deviation Ap, therefore, and the tangents to
the new characteristic lines of the fit family at point A can
be designed. At a point B, near point A, the intensity and
direction of the velocity are known; consequently, the tan-
gent to the characteristic Iine of the second family can be
designed at point B, and the point C, can be located. At
point C, the physical properties can be calculated with the
equations of potential flow (equations (8) and (9)) because
the shock in front of the body is conical ‘i’iTth the same
system the point C. is determined from the point B= on
the shock wave. In order to determine the flow of the point
Cn~l on the shock wave, the equation acrcm the shock and
the equation for the characteristic line of the fist family
must be used. If e is the angle between the tangent to the
shock and the direction of velocity of flow in front of the
shock, 6 the deviation of the direction of velocity across the
chock wave, and the subscripts a and b denote the conditions
ahead of and behind the shock, respect~vely, the shock equa-
tions can be mritten in the following form (reference 11):
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(51)

(52)

(53)

-+,”1+~ 1ylm
(54)

Equations (51) to (53) show that the general condition for
obtaining potential flow behind the shock when the flow in
front of the shock is potential is that ilfa sine must be con-
stmt. Since the value of Al= in front of the shock is known

d(8b–sJ
from equations (49) to (54), the values of ~ and ‘aW

can be determined as functions of 6 and therefore the equa-
tion for the characteristic lines of the fist family (equation
(25)) becomes ,

where WPC, is the velocity behind the shock, sqc~ is the

d(sb–s.)
entropy, ‘~ and d~ am coefficients that correspond to

a deviation across the shock for which the velocity assumes
the direction of pc=, WC=is the velocity, and SC,is the entropy

at the point C.. V7hen the value of dq has been determined,
the deviation across the shock ~ and the corresponding values
of W and e cm be determined at point Ctil,

In order to determine the velocity on the body at a point
Al, equation (26) is used. At point Al the value of p is
known becuuse the direction of the flQw is tangent to the

body and, therefore, dp is known; $; is also known because

in equation (27) the value of Sc corresponds to the value of
s at the point Al and is equal to the value at point A, which
is known from the cone calculation. From the value of W’,
the pressure on the body relative to the pressure PO’(pressure
for zero; velocity from isentropic transfomnation from the
conditions behind the shock) can be determined as

5=(1+72) 5 (56)

On the lip of the nose of an open-nose body a shock wave
that is a two-dimensional shock occurs; therefore, the tan-
gent to the shock on the lip is knowm and the pressure and
velocity behind the shock are also known (equations (49)
to (54)). In figure 3 the line AB and the velocity behind
the shock at point B are known. llrith equation (26) the
velocity at point C can be calculated with the system just
described, and from the point B the point D along the charac-
teristic line of the first family can be calculated by equation

(55). From point D the point E can bo calculated and a
point F can be interpolated, which permits the dcdormination
of points G and l% Because the curvature of tho shock
near the lip is large, a point C that is very near point A must
be selected so that correct interpolated values may ho ob-
tained, The point E can be recalculated from point G, and
the points 1 and M can be recalculated from point F in order
to have a second approximatioli.

For the case of twodimensional flow the proccdurc is the
same as that for three-dimensional flow; equations (43) to
(48) are used instead of the corresponding equations (cqup-
tions (31) to (36)).

EXAMPLES OF APPLICATION OF CHARA~TERISTICS
METHOD FOR ROTATIONAL FLOW

DETERMINATION OF SHOCK SHAPE AND PR=SURE DISTRIBUTION
MONG THE EXTERNAL SUEFACE OF A SLENDER OPEN-NOSE DOI)Y OF
If Evolution

Theoretical and e.xpmimental calculations were mado to
determi.ue the shock shape ancl pressure distribution tdong
the external surface of a slender open-nose body of revolu-
tion. The body considered is the same body for which cal-
culations of the external pressure dishibution wcro made by
Brown and Parker of tha Langley Afcmorial Aeronautical
Laboratory by use of the small-disturbance theory.’ Tho
calculations were made for a free-stream hlach number of
1.525, for which a schlieren photograph taken during tests
was available for comparison of tho calculated nnd t.esb
results,...

In order to determine the importance of rotation of the
flow, calculations for the front part of the body wcro also
made with the potential-flow characteristic equations. Tho
results of these calculations differed only slightly from tlwso
obtaine& from the characteristics method for rotational flow
because the curvature of the shock was very smaII. The

H
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M
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d
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FIQCEE &-Practkl sy6tem of c810ukdhg tlm flow Se3d for a slender ofkm-nose body of

revolution.
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&dv of revabtm

L._.—.—-—-—.—-—. J
FIGUEE A-ProetIad system of cahmlethg the externaI flow around adenderopen-ncee bady

of nxolutfon for .3f=l.&5.

calculations were begun with the determination of the two-
dimensional shock on the Lip of the nose. The practical
system of the calculations is shown in figure 4, and in figure
5 the calculated streamlines and shock-wtme shape are com-
pared with the shock-wave shape obtained from test results.
In @e 6 the pressure distribution calculated by the char-
acteristics method is compared with the pressure distribution
determined by the small-disturbance theory. The small-
disturbance theory undervalues the increase in pressure that
occurs through the shock, but the cMlerences in the restita
obtained by this method and those obtained by the charac-
teristics method are small.

117
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FIGCEE &-Caleuleted sfremlbe end shock wave for a slender omn-nme lmdy ofredution

forM=lJIZ&showfngexpdmentelshock-warsshape.

DE7PERMINA’IYON OF SHOCK SHAPE, STREAMLINES, AND PRESSURE D15
TRIBUTION ALONG THS INTERNAL SURFACE OF A SLENDER OPEN-NOSE
BODY OF REVOLUTION

Three slender open-nose bodies with dilhrent conical inlet
angles are considered (@s. 7 to 12) and the supersonic part
of the internal flow is studied for a free-stream Ilach number
of 1.6. For this type of body the internal shock produced
at the lip of the inlet has a very hirge curvature and the effect
of rotation is therefore very important. The calculations are
extended ta the region in which the Nfach number is 1.0.

f.2
Body of revdui%
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FIGUSS 6.–Presare dfstxibutfonalongtheexternalenrfamof a slender”own-nase body of retiti for M-I-62.5. COatB for smrdMkfmbanm thm from w~k by Brown rmd p~er
d tbe Langley LeboratLYY.)
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FIQUEE11.—Proet1mfsystemof eakrdatlnsthefnternalsnpxswnbffowpropertfmfor a
sfenderopen-rimeMy of rerolutlon for M=I.6.

The hypothesis is made that subsonic boundaqy conditions
and stability considerations permit a subsonic flow at the
end of the supersonic flow such as results from the calcula-
tions. The rwdts of the calculations show that at the
axis of the inlet a normal shock shays occurs and that the
region in which a strong shock occurs (with subsonic velocity
behind the shock) increases in extension with the increase
in angle of the internal cone. Vi%en the cone angle ap-
proailws zero and the shock is a llach wave, a complete
reflection occurs at the axis of the inlet and the extension of
the strong shock is zero.

For large internal cone angles (figs. 9 to 12) the shock is
a simple shock that becomes normal in the central part of
the body of revolution. After the shock the compression
continues but the characteristic lines cannot form an emm-
lope. For small internal cone angIes compression occurs
gradually and an envelope of Mach lines occurs. The shock
therefore rellects horn the central part and another shock is
generated. The form of the reflected shock is shown in figure
8. The ratio of the diameter of the region in which a strong
shock occurs to the diameter of the inlet as a function of the
internal cone angle is shown for ill= 1,6 in figure 13. The
results are interesting for the practical design of supersonic
inlets of alender shape because they show that for large cone
angles the central part of the body of revolution, in which
the compression is not very ef3cient, is huge.
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FIG~E 12-CaleuMed streamhes snd skock vm.re for fnternd flow fn a slender opsn-rmsa

body 0[ rewdut[on for M=l.6.

DETERMINATION OF PHYSIOAL PEOPERTI~ OF THE INTERNAL FLOW
THROUGH AN INLETWITH A CENTRAL BODY

For a lvlach number of 1.6 an analysis of the shape of an
inlet with a central body was made to aid in obtaining high
efficiency. Theoretically a supersonic difTuser with or with-
out a central body and having no shock losses or shock drag
can be obtained (reference 12); but for practical use it is
convenient to accept sma~ shock drag in order to avoid large
friction drag. The inlet considered (fig. 14) has a 10° central
cone. The detiation acroes the conical shock is 48’. The
shock is reflected by a cylinder that forms the external part
of the inlet. The reflected shock produceB rotational flow
behind the shock and the deviation acroes this shock on the
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Subsonic flow
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FIOUEE 13.–Ratfo of the dfemeter of the region fn whioh strong chock omurs to the diameter at the l~et ass f~ctfon ~ tho -e Of ln~md ~ne. ~-l.~.

M=LCW

FICWIEE14.-Prmtlod syetem of crderdnting the shape of the mntrrd hedy, of the strmmlines, snd of shc@k-wavo shefx for a surereenfo Infct et M-1.6.
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Ifim
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cylinder is 1° and on the central body, 2°43’. If the cen-
tral body behind the shock has the same direction as the
velocity, the shock w-ill not be reflect~d and isentropic
compression can be obtained behind the shock (fig. 14).
The design of the central body, therefore, was deter-
mined from the crdculation of the corresponding streamline.
The variation of the velocity along the external cylinder and
the value of the exit velocity were fixed, and from this con-
dition and the condition dependent on the shock, the ve-
locity at every point was calculated. In order to a~oid
errora stream tubes were designed that permitted, on the
basis of the ratio of the area in the region of uniform velocity
to the area at the end of the stream tube, a check on the
precision of the numerical .calculationa. The llach num-
ber in the minimum section of the inlet was tied at a vahe
larger than 1.0 so that disturbances from the subsonic part
of the flow would not cause instability. The value chosen
was 1.09.

If an effuser is connected with the diffuser, a body of
revolution with very low shock drag can be obtained (fig.
15). The only pressure losses are the losses across the two
shocks, which are very small; but for practical applications
the friction losses are larger than for the internal body alone.
A balance of the pressure losses and friction losses must
therefore be made in order to examine the possibility of
practical use of this arrangement.

CONCLUSIONS

A system for calculating the physical properties of super-
sonic rotational flow with axial symmetry and supersonic
rotational flo~ in a tvrodimensional field was determined

by usc of the characteristics method. Practical use of the
system is based on a step-by-step procedure, which requires
long numerical calculations; but the calculations for three-
dimensional flow are of the same type as for potential flow
and, therefore, can be used for the practical problems in
-which rotation is important. Some applications were made
to determine the external and internal flow on bodies of
revolution with a.xial symmetry, and the following con-
clusions were indicated:

1. The efTect of rotation is not very important if the
variation of entropy is small but is important in the study
of internal flow, for which the variation of entropy is usually
large.

2. ‘When the inlet is a circular conical channel, a shock is
produced at the lip of the inlet that becomes stronger when
the shock approaches the axis of the inlet and becomes a
normal shock at the axis. The region in which a strong
shock occurs (with subsonic velocity behind the shock) in-
creases with the increase of the angle of internal cone.

3. If an inIet with a central body is considered, the method
of characteristics permits the design of an interred-channel _.
shape that, theoretically, rwults in very eftlcient recom-
pression in the inlet; and, if an effuser is connected with th~
dithser, a body of revolution with very small shock-wave
drag can be determined.

LANGLEY JIEMORLkL AERONAUTICAL LABORATORY,
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